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ABSTRACT 

The theory of inelastic scattering is formulated, using detailed nuclear wave func­
tions which a r e  obtained from nuclear s t ructure  calculations. The inelastic scattering 
is assumed to proceed through a "direct" reaction, and nuclear s ta tes  a r e  obtained by 
projecting s ta tes  of good (J2 ,Jz) from a variational Hartree-Fock wave function. Gen­
e r a l  expressions for  transition amplitudes and the nuclear form factors  a r e  derived, and 
the form factors  for  inelastic proton scattering a r e  presented. These form factors  a r e  
compared with those based on the shell model and macroscopic collective model. It is 
concluded that the rest r ic t ions imposed in the Hartree-Fock model must be relaxed if the 
model is to give the cor rec t  order  of magnitude for  reaction c r o s s  sections. 
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INELASTIC SCATTERING FORM FACTORS USING PROJECTED 


HARTREE- FOCK WAVE FUNCTlONS 


by R icha rd  C. Bra ley  and Wi l l iam F. Ford 


Lewis Research Center  


SUMMARY 

The theory of inelastic scattering is formulated by use of detailed nuclear wave func­
tions which are obtained from nuclear structure calculations. The inelastic scattering is 
assumed to proceed through a "direct" reaction, and nuclear states are obtained by pro­
jecting s ta tes  of good (J2,Jz) from a variational Hartree-Fock wave function. 

General expressions for  transition amplitudes and the nuclear form factors  are de­
rived, and the form factors  for  inelastic proton scattering are presented. These form 
fac tors  are compared with those based on the shell model and macroscopic collective 
model. It is concluded that the restrictions imposed in the Hartree-Fock model must be 
relaxed if the model used here is to give the correct  order  of magnitude for  reaction 
c ros s  sections. 

INTRODUCTlON 

The success of the distorted wave method in direct  reactions, coupled with the avail­
ability of more accurate data, makes possible detailed studies of the effects of nuclear 
structure in nuclear reactions. In the past, however, only relatively simple nuclear 
wave functions have been used in such studies, namely, those based on the spherical-
shell model o r  the macroscopic collective model. The use of these models in reaction 
studies has been discussed exhaustively in the l i terature (refs. 1 to 3).  Although the re­
sul ts  so obtained have been fairly successful, it is well known that such primitive nuclear 
wave functions a r e  inadequate fo r  nuclear structure calculations. This raises consider­
able doubt as to  their  reliability for  the scattering calculations. The point has been em­
phasized by Glendenning and Veneroni, who, in a recent study of inelastic proton scatter­
ing from the even nickel isotopes, found that inelastic scattering is rather  sensitive to 
the details of a microscopic description of the target (ref. 4). Satchler (ref. 5) has given 
a discussion of inelastic scattering based on the shell-model description of nuclei situated 



near closed shells. Reaction studies (ref. 6) which were done af ter  Satchler's work, 
namely, A(pp')A* and A(p, n)B, indicate that a more  detailed description of the nuclear 
form factor is required. 

In reaction theory, efforts to use detailed descriptions of states of a collective nature 
have been minimal (ref. 7). Furthermore, it is well known that the spherical shell model 
does not produce collective effects. Detailed descriptions of the inelastic scattering of 
cr-particles and deuterons through collective excitation are generally limited to vibra­
tional states in the region of spherical nuclei. At the present stage of development, re­
action studies which make use of the collective model provide only the deformation pa­
rameter  and multipolarity of the transition. In nucleon inelastic scattering, if such a 
model is used, there is no provision for  the study of spin exchange o r  particle exchange, 
and the absence of spin-dependent forces  prohibits the study of unnatural parity states 
which may be excited via spin-flip. More complex projectiles, such as cr-particles, may 
require the use of coupled-channel methods to study parity states.  

When the macroscopic model is used in distorted wave Born approximation (DWBA) 
reaction calculations, it is assumed that the inelastic processes  result  from nonspherical 
components in the optical potential. A Taylor expansion of the optical potential, in t e r m s  
of the deformation parameter,  is made, and the first order  te rm in the expansion is r e ­
tained as the interaction which gives r i s e  to inelastic scattering. In the microscopic de­
scription, the choice of effective interaction is not this simple. A sum of effective two-
body forces  between the projectile and the target nucleon will be  assumed in this paper. 
The justification of such a choice will only be apparent af ter  the resul ts  of detailed calcu­
lations a r e  compared with experiment. A s  Satchler has  suggested (ref. 5), the use of 
such an effective interaction assumes that multiple scattering is not important; however, 
if one uses  phenomenological optical potentials to describe the distorted waves, then 
multiple scattering is neglected only in the off-diagonal par t s  of the scattering matrix.  
There is little that can be said about the analytic form of the effective interaction because 
it cannot, as yet, be calculated. The nucleon-nucleon interaction may be chosen to be 
either the two-nucleon t-matrix or  a spin-dependent phenomenological interaction. The 
nucleon-alpha o r  nucleon-deuteron t-matrix may be chosen in a similar fashion. It is 
suggested, however, that for the case of nucleon-nucleon scattering the phenomenological 
projectile-target nucleon interaction (for intermediate energies, 10 to 50 MeV) should not 
be radically different from the residual two-body force in the structure problem because 
the interaction occurs  in the field of nuclear matter.  

In recent years,  the Hartree-Fock (HF) theory (ref. 8) has received considerable 
attention in nuclear structure studies in the (p, s-d) shell nuclei. Recently Bouten, et al., 
using H F  methods, were quite successful in a structure study of carbon 12 (ref. 9). 
Structure calculations fo r  other nuclei (refs. 10 and 11) in the (1, s-d) shell have been 
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equally successful. The self-consistent H F  method provides a microscopic model which 
may be used to study systems of many bound nucleons. A particularly attractive feature 
of this model is the inclusion of residual two-body forces  between the nucleons in the 
system. The self-consistency requirement coupled with the use of residual two-body 
forces  in the Hamiltonian for  the nucleus gives r i se  to deformed orbits, if the angular 
H F  method is used. If a static (time independent) H F  calculation is performed, one ob­
tains an intrinsic wave function for  a statically deformed nucleus, and it is possible to 
project f rom the intrinsic wave function s ta tes  of good J and M which exhibit a rota­
tional character.  The extension of these methods to a time dependent formalism may be 
used to describe vibrational s ta tes  (ref. 12), although these s ta tes  are not discussed in 
any detail herein. 

The major objective of this paper is to formulate a microscopic theory of inelastic 
scattering from deformed nuclei. The nuclear wave functions for  the target and residual 
nucleus a r e  obtained by projecting s ta tes  of good J and M from the intrinsic H F  state. 
These wave functions a r e  then used to calculate nuclear form factors  for  reaction studies. 
Furthermore,  a recent study of the exchange term in the transition amplitude for  inelas­
t ic  nucleon scattering indicates that the exchange te rm is not negligible (ref. 3); these 
effects w i l l  be included i n  the reaction formalism to be presented herein. 

The transition amplitude is discussed in detail, and nuclear form factors  are defined; 
detailed expressions are given for  the nuclear form factors  for  the case in which the nu­
clear  states are described by projected H F  wave functions. A comparison of the H F  
form factors with those obtained from use of projected shell model s ta tes  and the macro­
scopic collective model is a lso  presented. 

Ajm, Bjm 

a , b ,  . . . 

B 

Bw 
cJ 

C?
Jm 

SYMBOLS 

re fers  to (A-1), particle systems 


irreducible tensors  of rank j 


quantum numbers for  particular single-particle states 


diffuseness of Wood-Saxon well 


N X N matrix 


element of matrix B 


normalization factor for  macroscopic form factor 


expansion coefficients for  Hartree-Fock orbits 
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K 

J 
P~~ 

'SE 

P~~ 

RS 


sJ 

rotation matrix 


Hartree-Fock single-particle energy 


single-particle form factors  


Hartree-Fock Hamiltonian 


incident (outgoing) channel 


total angular momentum transfer and its projection onto z-axis 


total angular momentum and projection for  nucleus in channel i 


total angular momentum and projection for  single-particle 


Clebsch-Gordan coefficient 


projection of J onto z-axis of the body-fixed system 


wave number of the projectile in channel i 


orbital angular momentum transfer and projection 


single-particle orbital angular momentum and projection 


symmetric 9-j coefficient 


reduced mass  of the projectile 


normalization factor 


Legendre polynomial with argument which is cosine of angle between 

-ro and F1 

angular momentum projection operator 

projection operator for singlet-odd states 

projection operator for triplet-even states 

Heisenberg exchange operator 


radius of Wood-Saxon well 


spectroscopic factor f o r  angular momentum transfer J 


neutron part of spectroscopic factor 
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SJ" proton part  of spectroscopic factor 

(s, PSI spin angular momentum and projection 

(SOP) projectile spin and projection onto z-axis 

Tab single-particle transition amplitude 

Tif 	 direct -reaction transition amplitude 

coupled form of transition amplitude 

transition amplitude for transfer of definite L and S 

tqr  (0) effective single-particle interaction 

tJM(0) coupled form of t (0)
qr qr 

t(0, 1) projectile-nucleon interaction 

strength of real part of optical potential 

optical potential 

two-particle interaction used in structure calculations 

Racah coefficient 

spherical harmonic with argument denoted by unit vector c0 

spin-angle tensor 

deformation parameter 

destruction and creation operators for  single-particle states 

h Hartree -Fock single-particle orbits 
+ spin tensor operator 

dcr/dG differential c ros s  section 

7 isospin 

or  cPK determinantal wave function for  A-particle system 
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rotated Slater determinant 


single-particle bas i s  function fo r  particle 1 


Hartree-Fock orbit 


rotated Hartree-Fock orbit 


nuclear wave function for nucleus containing A nucleons 


nuclear wave function in channel i with particle 1 


distorted waves for incident (+) and outgoing (-) channels 


Euler angles 


first two-plus state 


TRANS ITION AMPLITUDE 

General FormuIa t  ion 

Under the assumption that the projectile-target interaction can be  written as a sum 
of two-body interactions, the DWBA transition amplitude for  inelastic scattering from a 
target containing A nucleons is 

Tif = A(,b!-)(O)qf(l . . . A)lt(O, l ) / ,bp)(0)+i ( l  . . . A)) 

The initial and final nuclear states a r e  represented by and qf, and the initial and 

final projectile states by the distorted waves and +!-). We assume that integra­
tion over the internal coordinates of the projectile has already been carr ied out, so  that 
0 stands for  the spin, isospin, and center-of-mass coordinates of the projectile. The 
projectile-nucleon interaction is represented by t(0, 1); it may be the t-matrix, for  in­
stance, o r  a phenomenological pseudopotential. Fo r  nucleon-nucleus scattering, the 
major exchange te rm (ref. 3) may be included simply by writing 

Hin place of t(0, l ) ,  where Pol is the (Heisenberg) operator which exchanges all the co­
ordinates of particles 0 and 1. 
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Because of the assumption that the projectile-target interaction is two body in char­
acter ,  it is possible to express the transition amplitude in t e r m s  of single-particle tran­
sition amplitudes. We begin by expanding the initial and f i n a l  nuclear states in a complete 
set {q. } of single-particle wave functions, where j stands for  all the quantum num-

Jm
b e r s  (nlj7) except for  the z-component of angular momentum, which is denoted by mo. 
(Often, however, a will be  written fo r  the set jama, the set ja, or  even the set nalaTa, 
when no confusion will result. ) Thus, 

Qi(l. . . A) = A-1/2 c qa(l)Qia(2 . . . A) 
a 

The scattering amplitude then becomes 

ab 

where the single-particle transition amplitude Tab is given by 

It is convenient to express both Tif and Tab as sums of amplitudes for  transfer of total 
angular momentum (J,M)1 

Tif = (JiMi, J M  1 JfMf)TiM 
JM 

'Condon and Shortley conventions are used for  the Clebsch-Gordon coefficients 
(J1,ml, j2m2 IJM). Reduced matrix elements, W-coefficients and the 9-J coefficients, 
are defined in ref. 13. The U-coefficient w a s  introduced by H. A. Jahn (ref. 14). 
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And also to express \kia and 'kfb in t e r m s  of angular momentum eigenstates: 

1 


Then the relation 

T i M  = xSJ( i f lab)TabJ M  

ab  

holds, where the spectroscopic amplitude SJ is given by 

In the event that the distorted waves do not have spin-orbit coupling, one can decompose 
TJM still further into amplitudes for  transfer of definite L and S: 

TzsmL =E LSJML 
sJ(if 1 ab)Tab 

ab 

Here So is the spin of the projectile, and pi and pf are its initial and final projec­
tions on the z-axis. The sum over initial and final states of the entire system is inco­
herent in this case, so that we obtain 
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2 kf 2Jf + 1 

LSJ 

where 

S ingIe- Partic le Tra nsition A mplitude 

P th equation (7)the first step of the program, namely, to separ t e  details of the 
reaction mechanism (given by Tab) from details of the nuclear structure (given by SJ), 
is complete. The single-particle transition amplitude is of secondary concern; it may 
be evaluated in a number of ways  (ref. 6), depending on the specific forms  of t (0 , l )  and 
the distorted waves. Fo r  example, when the optical potential has no spin-orbit term,  
and the spin dependence of the two-body interaction can be expressed in t e r m s  of the spin-
tensors go= 1 and gl 2s as 

the equation 

is obtained, where 

I I 

gaLbSJ = )/2(24, + 1)(2ja + 1)(2S+ 1)(2J + 1) S 

t b  l /2  i j  
and 
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If tS is central, an expansion in Legendre polynomials 

ts(Fo,FJ P ~ ( G ~i.JtLS,r0, rl)
477 

L 

yields 

where the single-particle form factor f:: is given by 

ifA convenient way to express  this result is to define a nuclear form factor, fLSJ(rO), 
such that 

and then to write it in t e rms  of the single-particle form factors: 

ab 

If the two-body interaction t(0, 1) is isospin-dependent, tLs(Fo, Fl) will be a function 
of the isospin coordinates of the projectile and the bound nucleon. One could introduce a 
general formalism for  handling the isospin at this point. When Hartree-Fock wave func­
tions are used, however, there  occurs a natural separation of the spectr’oscopic amplitude 
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sJ into a neutron part S: and a proton part S:. Examples of the isospin treatment will 
therefore be deferred to  the section Spectroscopic Factor. 

Exchange term for  inelastic nucleon scattering. - In the case of inelastic nucleon 
scattering, Amos, et al. (ref. 3) have shown that the exchange te rm is nearly in phase 
with the direct term, and makes a substantial contribution to the c ross  section. To in­
clude this term,  when the spin-dependence of t (0 , l )  is as in equation (13), ts(Fo, Fl) in 
equation (16) must be replaced by 

where PET is an operator which exchanges the space and isospin coordinates of nu­
cleons 0 and l andwhere 

The exchange t e rms  cannot be put in a form like equation (18), of course, so no form 
factor can be defined. 

Form factors for  coupled channel calculation. - In some reactions, transition ra tes  
to various excited states of the nucleus are comparable in magnitude to the ground state 
(elastic) transition rate. Consequently, even an approximate wave function should have 
considerable projection onto these excited states, and the resulting analysis is a coupled-
channels calculation. For such a calculation a set of effective projectile-target interac­
tions of the form 

tif(0) 3 A(!Pf(l . . . A)]t(O,f)]!Pi(l . . . A)) 

= (JiMi, J M  I JfMf)tGM(0) 
JM 

is needed, where the integration extends over the nuclear coordinates and the internal 
coordinates of the projectile and i and f now label the nuclear states included in the 
expansion of the total wave function. Proceeding exactly as before, a single-particle ef ­
fective interaction is introduced. 
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I 

JM 


The two equations are related by 

tGM(0) = SJ(if ]ab)t:r(O) 
ab 

When t (0 , l )  can be  expanded in spin tensors and spherical  harmonics as in equations (13) 
and (17), the equation 

LS 

ifis obtained, where fLSJ is defined in equation (21) and the spin-angle tensor WLSJ is 
given by 

Spectroscopic Factor 

The evaluation of SJ is performed using Hartree-Fock wave functions. As is well 
known, the Hartree-Fock method consists of approximating the nuclear wave function by 
a single Slater determinant, 

where { qA} is a set  of single-particle wave functions, o r  orbitals. These functions 
are determined by the requirement that minimizes the expectation value of the nu­
clear Hamiltonian H, which leads to the coupled eigenvalue equations 
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where 

2m 

with the p-sum restricted to those orbitals used to construct 9. 
The intrinsic H F  wave function does not depend on the orientation of the deformed 

field relative to the space-fixed system, and, clearly, the single-particle energies of the 
nucleons in the deformed field do not depend on this orientation. Thus, states of the in­
trinsic system which are based on the same deformed field are degenerate with respect 
to orientation; any two such states are simply related by 

where Q is the orientation of Z" relative to 2'. Also, it should be noted that the 
states 'pK are not states of good J.  However, it is possible to construct states of good 
J and M in the space-fixed system by taking appropriate linear combinations of the de­
generate states cpK(Z'). 

In order  to determine the expansion coefficients, a particular qK(sE')is expanded in 
a complete set  of states {$$(Zf)} which are normalized eigenstates of J2 and J, in 
the body-fixed system: 

K -Here, %' stands for  all the coordinates in the body-fixed frame.  If qJ(x') is now ex-
M ­pressed in t e r m s  of the states qJ (x) in the space-fixed f rame 

where S2 is the orientation of the body-fixed f rame relative to the space-fixed frame, 
then 
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I 

This expression may be inverted to give 

A linear combination of intrinsic states, with 

as the weighting coefficients, gives r i se  to a state of good J and M in the space-fixed 
f rame (eq. (17)). It is not necessary to calculate each qK(zT)individually, b-ecause 

hence, equation (17) can be written 

J 

Thus, it is sufficient to calculate 'pK in the space-fixed f rame and car ry  out integration 
(18), which is denoted symbolically by 

It is clear that, from one intrinsic state qK,  many states  # may be generated; these 
are usually associated with the rotational bands found in deformed nuclei. The Slater de­
terminant qK(z)may be written as the antisymmetrized product of two determinants, 
one of which represents the spherical closed-shell core and the other the M nucleons 
outside the core. Because the core determinant has J = 0, it will be  unaffected by the 
rotation operator R(S2). Hence, the net effect of the rotation operator in equation (18) 
will be to rotate each of the orbits in the extracore determinant only, o r  equivalently, 
to rotate only the extracore orbitals in qK. 

Of course, the state *JM yields a higher expectation value of H than @ does, be­
cause of the c ros s  terms,  but it is hoped that the discrepancy is not large. Calculations 
in the s-d shell confirm this hope, at least for  low-lying nuclear levels (refs. 10 and 11). 
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A better procedure would be to determine the set { } by minimizing (9IH I @) di­
rectly, but this is a formidable task and until recently (ref. 9) has not been attempted. 

Quite commonly the nucleus is represented as N nucleons outside a closed-shell 
core, and the core orbitals are not varied in the Hartree-Fock procedure. In that case 
equation (37)becomes 

where hc(i) is the Hamiltonian (eq (31)) for  the core orbitals and the sum over p is 
limited to the extracore orbitals in 8.  Usually hc is not dealt with directly; instead, 
its eigenfunctions are assumed to be shell model orbitals (harmonic oscillator functions, 
for instance), and its eigenvalues are taken from experiment (ref. 15). As before, eigen­
states of J2 and Jz a r e  obtained using equation (32), but, because of the closed-shell 
core, a simplification occurs. The determinant @ may be written as the antisymme­
trized product of two determinants, one of which represents the core nucleons. This 
latter determinant has J2 = 0 and is thus invariant under rotations. Hence, the net ef­
fect of the rotation operator in equation (32) is to rotate only the extracore orbitals in @. 

Whatever method is used to determine { s o x } ,  we assume that the nuclear wave func­
tions are single Slater determinants projected onto states of good J and M by means of 
equation (18). W e  also assume the existence of a closed-shell core, identical in initial 
and final states, because, in the final results, the core can always be taken to contain no 
particles. Finally, we assume that the set { q x }  has been made orthonormal, because 
any nonorthogonal components would make no contribution to the Slater determinants. 

The first task is to show that the summation over single-particles in equation (3), 
and consequently in equation (7), is restricted to states outside the core. This is easiest  
to show in the notation of second quantization, using fermion creation and annihilation op­
erators ,  for,  then, the overlap integral in equation (3)may be written 

The first term on the right side of equation (34)vanishes for  inelastic transitions, be­
cause the initial and final nuclear states a r e  orthogonal. The second term will a lso 
vanish, if either a or  b re fers  to a core state, because the core has been unaffected 
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by the projection procedures of equation (32) (except f o r  antisymmetrization) and is con­
sequently still filled. 

We next turn to evaluation of the spectroscopic amplitude SJ. If the nucleus is not 
spherical, the orbits cpA will, in general, be  of the form 

where { cp
jm 

} is the complete set used earlier.. Consequently, an expansion of the de­
terminant 9 leads to 

Ajm 

where QA(-l)is the cofactor of cpA in @ and is itself a normalized Slater determinant 
for  A - 1 nucleons. 

The projection operator PkK must now be applied to 9. From the definition of Q,  
Jit may be shown that PMK picks out states whose j2and Jz eigenvalues a r e  J(JH) 

and K, respectively, and then changes the J, eigenvalue from K to M. Consequently, 
transforms under rotations like an irreducible tensor Am. The product of an-

P~~ J'other irreducible tensor Ajm with PMvK' may therefore be written 

= 2 (J'M', jm)JIM1)BJ (j; J'K') (44)
1 1  

JIMl 

Jand application of PMK then yields 

J J' 
'MKAjmP M'K' = (J'M', jm [ JK)Bm (j; J'K') 

(Note that BJK has been singled out and then transformed to BJM. ) Setting K' = M' 
and summing both sides of equation (45) over all J' and M' resul ts  in 
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which is the desired theorem. 
Using equations (43)and (46)to construct the nuclear wave function Qm yields 

J M  J M  
From the definitions of QiaA A and 'kfb B, given by equations (2) and (6), it follows 
by comparison with equation (47)that 

hlMimaKi 

The overlap integral needed for evaluation of SJ is therefore given by 

For  simplicity, the normalization of the initial and f i n a l  nuclear states has been ig­
nored in the derivation of equation (49). It is clear, however, that 
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K 

will not be  normalized to unity, even if 9 is, and equation (49) should therefore be mul­
tiplied by the normalization factor 

where 

The integrals appearing in equations (49)and (51) are evaluated by means of the inte­
gra l  representation (32) fo r  PMK. Consider the normalization integral, which contains 
t e rms  of the form 

where % = R(S2)CP. The effect of R(S1) on CP is to rotate each of the N extracore orbi­
tals in C P .  The core orbitals in CI, and % a r e  identical, and so we find that 

(@I%)= det {B} (53) 

where B is an N X N matrix with elements 

The integral in equation (49) is treated in a similar fashion, except that now te rms  
of the form 



are encountered. Here QfA and QiP are normalized Slater determinants for A - 1 par­
ticles, again with identical core orbitals. It can be  shown in this case that (a fh 1%. 

1P
) 

is equal to the cofactor of B
AP 

in the determinant det { B}. An elementary theorem 
concerning cofactors of determinants then permits us  to write 

where b is an element of the matrix b = B-'.
P A

Most Hartree-Fock calculations are made without isospin mixing, which means that 
each orbital is either a pure neutron state o r  proton state. The summation in equation 
(49) is therefore restricted by the condition = T , and the result vanishes unless 

1 A2 
Ta = Tb. One may thus speak of the proton part SJ' or the neutron part  Sy of the spec­
troscopic factor defined in equation (8). 

FORM FACTORS FOR 2s-ld SHELL NUCLEI 

S t r u c t u r e  of s-d Shell Nucle i  

The general procedure that is used to obtain nuclear states of good J2 and Jz w a s  
discussed in the previous section. In the calculation of the "intrinsic" state defined in 
equation (29), we have assumed that oxygen 16 constitutes the inert closed-shell core. 
The 2s- ld  shell nuclei a r e  considered to be axially symmetric, although there have been 
some calculations which indicate regions of asymmetry (namely, Mg24, S32). However, 
because the prediction of asymmetric regions in the s-d shell is based only on the exami­
nation of the intrinsic spectra and because the assumption of axial symmetry has already 
yielded excellent structure resul ts  (ref. 8), we believe that the assumption is justified. 
In this case, equation (32) becomes 

*JM = P
J 

~ ~ @ ~ (57) 

J and the orbitals 'pA will be of the form 

The subspace of the basis  states is limited to the 2s- ld  shell (i.e. , lds12, 2sl12, 
ld3,2), with harmonic oscillator radial dependence. The spherical single -particle 
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- -  
energies are taken from experiment, and the two-body interaction which appears in equa­
tion (33) is chosen to be  a Rosenfeld mixture with a Gaussian radial dependence2 

2 7.1 - 7. 
v(i, j )  = Voe-pr J(0.3 + 0.7 ai - aj)

3 

with Vo = +55 MeV. The harmonic oscillator constant, v = mw/B, was chosen such that 
p = v. There has been no correction for  center-of-mass motion. 

The determinate wave function chK is constructed in such a way that, along with 
each single-particle state, one also includes the time reversed state 

that is, a proton and neutron are put in the state (58) and the state (59). This gives rise 
to a fourfold degeneracy of each orbit in an even-even nucleus; the resulting determinate 
wave function is then the time reversed invariant. The construction of such states for 
odd nuclei is more involved and will not be considered. 

TABLE I. - ENERGIES AND WAVE FUNCTIONS FOR NEON 20 

AND MAGNESIUM 24 

Nucleus 
and 

Hartree-Fock 
energy 

Ne2' 

(EHF = -38 .95  MeV) 


Mg24 
(EHF = -75 .68  MeV) 

Projection of Hartree-Fock orbits 
honto spherical basis, C.
J 

energy, lmomentum 
Id

3/2 1 
-0 .3996-16 .42  

-18 .66  1/2 
-12 .14  3/2 

0 .7155  -0 .5731  

0.6997 -0 .6400  
.9616 0 

-0.3175 
-. 2744 

hThe C.
3 

' s  for neon 20 and magnesium 24 (Ne2' and Mg24) have been obtained from a 
computer code (private communication, W.  Bassichis) which solves the variational prob­
lem by an iterative procedure. In table I, the results of these calculations a r e  given for  

2A Yukawa radial dependence was also investigated and yielded results almost iden­
tical  to the Gaussian dependence. 
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occupied proton (or neutron) orbits with positive m-projection. The orbits for  the time-
reversed states may be obtained by application of equation (3). The degenerate orbits are 
specified by the HF single-particle energies, ex (see eq. (33)). 

It is clear from examination of table I that the orbits in both Ne2' and Mg24 are 
strongly deformed. These resul ts  are in agreement with results obtained by other re­
searchers  (ref. 16). 

Direct Interaction 

The calculation of microscopic form factors  for inelastic scattering requires a h o w -
ledge of the projectile-nucleon interaction. At the present stage of development, the 
theories of the nucleus and reactions are not sufficient to provide such a force. Instead, 
either a phenomenological interaction o r  the two-nucleon t-matrix must be used. From 
this point on, the projectile is assumed to be a nucleon. 

W e  have chosen a phenomenological spin-dependent interaction which was used by 
Glendenning and Veneroni in a recent study of inelastic scattering (ref. 4). These authors 
assumed the two-body interaction to be important only in even states, and used an inter­
action of the form 

2 
V(?) = -52e-(r/1* 95) (PTE+ 0.6 PsE) (60) 

where PTE and PSE a r e  projection operators for  the triplet-even and single t-even 
states, respectively. In t e rms  of single-particle operators, 

V ( r )  = - 5 2 F . 3 f  - f  F o - Fl) - O . l ( f +  Fo. Fl)zo- g q e  -(r/l. 85)2 

where F0 and F1 refer to the isospin of the projectile and bound nucleon, respectively. 
Comparing equation (61) with equation (13), it is shown that (with r = I Fo - TII ) 

to(Fo,Fl) = -15.6 (1 -:Fo..l>. -(r/l. 85)2 

and 

- 4tl( ro,rl) = 5.2 -(r/l. 85)2 
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Because the projectile is in a pure isospin state and because the charge exchange is not 
considered an  inelastic scattering event, the matrix element of Fl. Fo will be  +1 when 
projectile and target nucleon are like nucleons and -1 when they are unlike nucleons. 
Hence, the form factor can be  written as the sum of the two te rms ,  one for  protons and 
one for  neutrons. 

Form Factors for Neon 20 and Magnesium 24 

We have computed the form factors  fEsJ for  excitation of the first 2+ state of Ne20 

and Mg24, assuming the projectile to be a proton. In f igures  1to 4, the Hartree-Fock 
form factors  are compared with those obtained from the shell  model and the macroscopic 
collective model. The shell-model states are obtained by filling the Id

5/2 
spherical or­

bi ts  to obtain either Ne2' or  Mg24, and then states of good J2 and Jz are projected 
from the resulting intrinsic state. The macroscopic form factor is proportional to the 
derivative of the real part of the optical potential which is used to f i t  the elastic scatter­
ing (ref. 17). In keeping with convention, this form factor is assumed spin dependent, 
and has a derivative Woods-Saxon radial  dependence: 

where C depends on multipolarity of the transition, the optical model parameters,  and 
the deformation p, of the nucleus. The well parameters,  Rs and as, refer to the ra­
dius and diffuseness of the real part  of the optical potential V

OP
(r

0
) and ro is the sepa­

ration between the projectile and the nuclear surface. If Uo as the strength of the opti­
cal potential, 

CJ = 'JUORS 
+

aS(2J + 1)1/2 

D 


In figures 1and 2, the H F  form factors for  Ne2' and Mg24 are compared with the 
corresponding shell-model form factors.  For both Ne2' and Mg24, the scalar par t s  
(S = 0) of the H F  form factors  are enhanced over the shell-model resul ts  by a factor of 

I 

about 1.5.  At small  values of r(5lf) the form factors  fo r  Ne2' are essentially identical. 
However, as r increases, the difference becomes quite significant, and, at roughly 
r = 4 and beyond, the HF form factor is larger  by approximately a factor of 2. A simi­
lar behavior is observed for  the case of Mg24, except that the scalar part of the HF form 
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- Form factors for inelastic proton scattering from neon 20. 
1curve has been magnified to make it visible.) 
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Figure 2. - Form factors for inelastic proton scattering f rom 
magnesium 24. 

factor and the shell-model resul ts  are the same only at r 5 0.4  fe rmi  (or fm). Another, 
perhaps less important, feature is that the H F  (S = 0) and the shell-model form factors 
peak a t  different values of r for  both Ne2' and Mg24. In both cases, the H F  results 
have their maxima nearer  the accepted values of the nuclear radius (R = 1.25 A1/3 fm) 
than do the shell-model results. 

The H F  vector form factor (S = l), which gives rise to spin-flip transitions, is 
difficult to analyze because its shell-model counterpart vanishes identically. (This is 
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due to the fact that gtbm which appears in equation (21) is zero fo r  the shell model 
states. ) However, note that the HF vector form factors  for Ne2' and Mg24 are about 
300 t imes smaller than the scalar  parts.  If the direct interaction which has been chosen 
(eq. (60)) is realistic, then the meaning of this result is simply that, for  excitation of the 
2; states in Ne2' and Mg24, the spin-flip part of the reaction mechanism is unimportant. 
A more reliable investigation of this question must be relegated to later studies in which 
angular distributions are compared with experiment. 

The macroscopic form factors  are compared with the H F  resul ts  in figures 3 and 4. 
Only the scalar part of the HF form factor is plotted, because the macroscopic model 
does not yield a vector form factor in the approximation which leads to equation (56). 
The normalizations CJ for the macroscopic form factors  are based on the parameters 
which appear in the figure captions. These parameters are obtained from elastic scatter­
ing studies (ref. 18) and the measurement of the lifetime of the 2+ states (ref. 19). 
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Form factor 
Hartree-Fock (s = 0) 
Macroscopic 
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Figure 3. - Form factors for inelastic proton scattering from neon 20. Radius of 
Wood-Saxon well, 3.393 femtometers; deformation parameter, 0.87; diffuseness 
of Wood-Saxon well, 0.6 femtometer; strength of real part of optical potential, 
45 MeV. 
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Figure 4. - Form factors for inelastic proton scattering f rom magnesium 24. 
Radius of Wood-Saxon well, 3.605 femtorneters; de'ormation parameter, 
0.65; diffuseness of Wood-Saxon well, 0.6 femtometer; strength of real 
part  of optical potential, 45 MeV. 

Figures 3 and 4 show that, although the collective form factors for Ne2' and Mg24 

have the same shapes as the H F  results, they are enhanced by factors of about 5 (for 
Ne20) and 4 (for Mg24). When the differential c ross  section is calculated, because it is 
related to the square of the form factor, the enhancement in magnitude of the c ross  sec­
tions wil l  be of the order of 20 t imes larger fo r  the collective model. In figure 3, the 
maxima of the form factors occur at about the same radius, whereas, in figure 4, the 
macroscopic result has its maximum at a slightly larger radius. 

SUMMARY OF RESULTS 

The inelastic scattering of nucleons and composite particles from nuclei has been 
formulated in t e r m s  of a projectile-nucleon interaction and a many-body variational wave 
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function which is obtained from structure calculations. The actual nuclear states are 
generated from the variational wave function by projection - a method which has been 
quite successful in the study of low-lying levels of s-d shell nuclei. 

The form factors fo r  inelastic scattering of protons from Ne2' and Mg24 have been 
computed, based on the assumptions given above, and compared with the form factors 
based on the projected shell model and the macroscopic collective model. The vector 
part of the HF form factor is very small, as one might expect because the shell model 
counterpart vanishes identically. The scalar part  is larger than the corresponding shell-
model form factor. The macroscopic form factor is even larger than the HF result, 
however, indicating that c ros s  sections which are calculated using the HF method with 
projection, will be  too small  by a factor of about 20. 

The model which has been used in these calculations is based on the assumption that 
the core is spherical and inert .  Calculations by the present authors of B(E2) rates have 
yielded resul ts  which are a lso  smaller than experiment. This is in agreement with the 
form factor study presented fo r  both Gaussian and Yukawa interactions. Thus, the HF 
theory appears to be inadequate to provide the correct magnitude for c ros s  sections, 
etc. , if the inert core assumptions is retained. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 9, 1968, 
129-02-07-07-22. 
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